

Executive summary

The present application seeks to amend Schedule 18—Processing aids of the Australia New Zealand Food Standards Code (the Code) to approve a pullulanase enzyme preparation produced by Novozymes.

Proposed change to Australia New Zealand Food Standards Code - Schedule 18— Processing aids

Schedule 18—Processing aids is proposed to be amended to include a genetically modified strain of *Bacillus subtilis* expressing a pullulanase from *Bacillus deramificans* as permitted source for pullulanase.

The application is applied for assessment by the general procedure.

Description of enzyme preparation

The enzyme is a pullulanase (EC 3.2.1.41).

Pullulanase catalyses the hydrolysis of $(1\rightarrow 6)$ - α -D-glucosidic linkages in pullulan, amylopectin and glycogen, and in the alpha- and beta-limit dextrins of amylopectin.

The enzyme is produced by submerged fermentation of a *Bacillus subtilis* microorganism expressing a pullulanase from *Bacillus deramificans*.

The pullulanase enzyme preparation is available as a liquid preparation complying with the JECFA recommended purity specifications for food-grade enzymes.

The producing microorganism, *Bacillus subtilis*, is absent from the commercial enzyme product.

Use of the enzyme

The pullulanase enzyme preparation is used as a processing aid in starch processing for glucose syrups production and other starch hydrolysates. Generally, pullulanase hydrolyses 1,6-alpha-D-glucosidic linkages in pullulan and partially hydrolysed amylopectin as well as alpha- and beta-amylase limit dextrins of amylopectin¹. When the substrate is partially hydrolysed amylopectin, linear maltodextrins like maltotriose and maltotetraose are released.

Benefits

The benefits of the action of the pullulanase in starch processing for glucose syrups production and other starch hydrolysates are:

• Efficient degradation of starch increasing the substrate availability for other enzymes, thereby enabling higher yield of the substrate (dextrins) used for further processing and production of syrups.

¹ Pullulanase also hydrolyses 1,6-alpha-D-glucosidic linkages in glycogen, partially hydrolysed glycogen and glycogen limit dextrins. This is not known to have industrial food use

Safety evaluation

The safety of the production organism and the enzyme product has been thoroughly assessed:

- The production organism has a long history of safe use as production strain for foodgrade enzyme preparations and is known not to produce any toxic metabolites.
- The genetic modifications in the production organism are well-characterised and safe and the recombinant DNA is stably integrated into the production organism and unlikely to pose a safety concern.
- The enzyme preparation complies with international specifications ensuring absence of contamination by toxic substances or noxious microorganisms
- Sequence homology assessment to known allergens and toxins shows that oral intake of the pullulanase does not pose food allergenic or toxic concern.
- Two mutagenicity studies *in vitro* showed no evidence of genotoxic potential of the enzyme preparation.
- An oral feeding study in rats for 13-weeks showed that all dose levels were generally well tolerated and no evidence of toxicity.

Furthermore, the safety of the pullulanase preparation was confirmed by external expert groups, as follows:

• Denmark: The enzyme preparation was safety assessed resulting in the authorisation of the enzyme product by the Danish Veterinary and Food Administration.

Conclusion

Based on the Novozymes safety evaluation, confirmed by the above-mentioned bodies, we respectfully request the inclusion of the pullulanase in Schedule 18—Processing aids.